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The transport properties of real  gases vary very sharply under conditions of dissociation and ionizat ion,  In order to 
analyze the effect of these variations on heat transfer, it is worthwhile considering a model  with discontinuous transport 
properties. In this note we shall consider the effect of discontinuous Prandtl numbers on heat transfer. 

Lees [ t ]  has shown that in the case of a strongly cooled wall, with constant product of viscosity and density across 
the boundary layer,  the veloci ty  and enthalpy of the gas are determined by the system (in the usual notation): 

2/'" + / / "  = o, (i'/~)" + V2/i '= o,  

1=/'---=-0, i = i  w for ~ 1 = 0 ,  [ '--~1, i---~l for rl---~oe. 
(1) 

When the Prandtl number is discontinuous at a point ~ = 7/o, the enthalpy and heat flux at that point must satisfy 
the continuity conditions: 

i (~lo - -  0) = i 010 + 0), ~2i' (~10 - -  0) = a~i' 0q0 -J- 0), 

~==~1 for ~1~10, ~ = ~ 2  for ~1~10.  (2) 

Then, using (1) and (2), we can easily obtain by quadratures the value of i ' (0)  determining the heat  transfer to the 
wall surface. 

We are pr imari ly  interested in two cases: 

1. The Prandtl number is equal to unity (the PrandtI number is assumed to be o = 1 purely for s implic i ty)  every-  
where except for a narrow range ~1 <- ~1 <- ~2, where o = o I = const. We shall assume that the range A~ = 72 --~11 
is sO smal l  that terms O(A~ 2) may be neglec ted .  Then it is easy to show that 

(o) = (t - i~ ) /"  (o) If' (nl) ~- 2I" (n~) ( t  - exp - ) +  (hi) AN i' 
k 

(3) 

+ exp -(~, (']]I)m'l'] "i~ - __ /' ( 'q l ) -  A'q," ('I]i) .-~. A~ '  ~1_  ) - -  (~_ /, (.ql))Jl--1 1_ 0 ( A . q , ~ ) - -  ~. - -  o 

Hence it follows that if the gas has an inf ini tely high thermal  conductivity in the interval  AT/, 

i ' ( 0 ) = ( l - -  iw) f"(O) for ~1 A~I--* 0 .  (4) 

This is the same value as when o = 1 throughout the boundary layer .  Thus a thin layer of gas with high thermaI 
conductivi ty does not affect the heat flux at the wall .  

The situation is different for a layer of gas with low thermal  conductivi ty.  The degree to which such a layer can 
affect the heat flux to the wall depends strongly on its position. At high ~ it has prac t ica l ly  no effect on thehea t  flux, 
whereas when it is near the wall its effect may be arbitrari ly strong. The physical  explanation is that the layer behaves 
like a f ike r ,  which permits heat transfer associated with a mass flux, but impedes conductive heat transfer. And since 
the mass flux varies across the boundary layer ,  the heat  flux to the wail must vary accordingly.  In the general case, 
with prescribed OlA ~, the wall heat  flux is determined by (3). 

In heat- t ransfer  calculat ions one often uses the notion of a character is t ic  enthalpy (or temperature) ,  which deter-  

mines the gas properties, including the Prandtl number ~. The character is t ic  enthalpy usually depends l inearly onthe  wall  
tempera ture :  Thus, when the walt tempera ture  changes, the wall enthalpy will pass through a value i w for which the 
heat flux, as determined by the charac ter i s t ic -enthalpy method, will experience a discontinuity, whereas, according to 
(3), the heat flux is a continuous function of i w. This indicates that the charac ter i s t ic -enthalpy method does not lead to 
satisfactory results in the case of discontinuous (or strongly varying) gas properties. The good agreement  between the re-  

suits of heat - f lux  calculat ions by the charac ter i s t ic -entha lpy  method and exper imenta l  data is because most exper imen-  
ta l  data have been obtained for re la t ive ly  low stagnation temperatures,  for which the variat ion of the gas properties 
across the boundary layer satisfies "s imi lar i ty"  conditions ( the Prandtl number is prac t ica l ly  constant, and the product 
of density and viscosity is a power function of the enthalpy).  These "s imi lar i ty"  properties also enable  us to obtain 
satisfactory formulas for the heat flux at re la t ive ly  low temperatures by the charac ter i s t ic -entha lpy  method.  
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2. Fig. 1 shows the Prandtl number as a function of enthalpy for a dissociated gas at equilibrium when p = 1 at m 

(the curves corresponding to other pressures are similar). It is required to calculate the wall heat flux for the given de- 
pendence of the Prandtl number on enthalpy. 
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Fig. I. 

The broken line in Fig. 1 represents a step function which will serve as a first 

approximation to this dependence. In accordance with Fig. 1, we shall assume that 
the Prandtl numbers are prescribed as follows: 

In this case i '(O)is given by 

"ll 1 

0 

+ ~i [/' Oh)]l_=, (TI)]';' dq 
~2 

(5 

The values of the enthalpy at the points of discontinuity can be calculated from 

I [ s" (n) l iOh)=iw+i'(O) k ~ J  dn, 
0 

(~) 

i' (o) [ I" (m) ]~, /" (m) - I' (n,) 
(TI~) = i (Th) + ;~ L j-)=-~-j /,, (rh) , (7) 

In accordance with Fig. 1, we can assumeo 1 = 0.7, o 2 = 0.82 for the entha l -  

py range i o ~ 25 000 kcal /kg.  These values were used in Fig. 2 ,  which shows 
i ' ( 0 )  as a function of lh ,  ~2, with I = i ' ( 0 ) / ( 1 - i w ) .  

When the enthalpy at the outer edge of the boundary layer is i e ~ 25 000 

kcal /kg,  Fig. 2 shows that for i w << 1 the wall heat flux is 30%higher  for the 
enthalpy dependence of the Prandtl numbers given by Fig. 1 than for a constant 
value o = 0 . 7  throughout the boundary layer. 

Note that in physically meaningful problems the values of i(H1), !(~2) are 
usualIy prescribed. In these cases i '(O), "01, ~ can be determined from the 

system (5)-(7). 
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