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The transport properties of real gases vary very sharply under conditions of dissociation and jonization. In order to

analyze the effect of these variations on heat transfer, it is worthwhile considering a model with discontinuous transport
properties. In this note we shall consider the effect of discontinuous Prandt]l numbers on heat transfer.

Lees [1] has shown that in the case of a strongly cooled wall, with constant product of viscosity and density across
the boundary layer, the velocity and enthalpy of the gas are determined by the system (in the usual notation):

2f" + 1" =0, (Us) 4 ofi’=0, (1)

f=F=0, i=ip for =0, f—1, i—>1 for n—>o0.

When the Prandtl number is discontinuous at a point 5 = 7y, the enthalpy and heat flux at that point must satisfy
the continuity conditions:
t(Mo—0)=1i(no+0) G2’ (Mo — 0) = 61" (o + 0,
(2)
s=06, for n <N, =0 for n>n.
Then, using (1) and (2), we can easily obtain by quadratures the value of i'(0) determining the heat transfer to the

wall surface.
We are primarily interested in two cases:

1. The Prandtl number is equal to unity (the Prandtl number is assumed to be o = 1 purely for simplicity) every-
where except for a narrow range ng =1 = 1y, where o = 0y = const. We shall assume that the range An = ny —n4
is so small that terms O(Anz) may be neglected. Then it is easy to show that
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Hence it follows that if the gas has an infinitely high thermal conductivity in the interval Ag,
10)=(1—ipf" 0 for o An-— 0. (4)

This is the same value as when ¢ =1 throughout the boundary Iayer. Thus a thin layer of gas with high thermal
conductivity does not affect the heat flux at the wall.

The situation is different for a layer of gas with low thermal conductivity. The degree to which such a layer can
affect the heat flux to the wall depends strongly on its position. At high nit has practically no effect on theheat flux,
whereas when it is near the wall its effect may be arbitrarily strong. The physical explanation is that the layer behaves
like a filter, which permits heat transfer associated with a mass flux, but impedes conductive heat transfer. And since
the mass flux varies across the boundary layer, the heat flux to the wall must vary accordingly. In the general case,
with prescribed g3An, the wall heat {lux is determined by (3).

In heat-transfer calculations one often uses the notion of a characteristic enthalpy (or temperature), which deter-
mines the gas properties, including the Prandtl number g. The characteristic enthalpy usually depends linearly onthe wall
temperature: Thus, when the wall temperature changes, the wall enthalpy will pass through a value iy, for which the
heat flux, as determined by the characteristic -enthalpy method, will experience a discontinuity, whereas, according to
(3), the heart flux is a continuous function of i,,. This indicates that the characteristic -enthalpy method does not lead to
satisfactory results in the case of discontinuous (or strongly varying) gas properties. The good agreement between the re-
sults of heat-flux calculations by the characteristic-enthalpy method and experimental data is because most experimen-
tal data have been obtained for relatively low stagnation temperatures, for which the variation of the gas properties
across the boundary layer satisfies "similarity"” conditions (the Prandtl number is practically constant, and the product
of density and viscosity is a power function of the enthalpy). These "similarity” properties also enable us to obtain
satisfactory formulas for the heat flux at relatively low temperatures by the characteristic-enthalpy method.
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2. Fig. 1 shows the Prandt] number as a function of enthalpy for a dissociated gas at equilibrium when p = 1 at m

(the curves corresponding to other pressures are similar). It is required to calculate the wall heat flux for the given de-

pendence of the Prandtl number on enthalpy.

— the Prandtl numbers are prescribed as follows:

In this case i'(0)is given by
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The values of the enthalpy at the points of discontinuity can be calculated from
Ty
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In accordance with Fig. 1, we can assume 6y = 0.7, 03 = 0.32 for the enthal- 4 AP,
py range iy < 25 000 kcal/kg. These values were used in Fig. 2, which shows /72 ‘
i'(0) as a function of ny, 0y, with I = i'(0)/(1—iy). : Wﬁ/ /'w
When the enthalpy at the outer edge of the boundary layer is i, ~ 25 000 032 /// /2»4
kcal/kg, Fig. 2 shows that for i, < 1 the wall heat flux is 30 % higher for the /7 //z/{ 7=
enthalpy dependence of the Prandtl numbers given by Fig. 1 than for a constant 024 ///
value o = 0.7 throughout the boundary layer. %/
hat i ; : . : 224 Z :
Note that in physically meaningful problems the values of i(ny), _1(112) are
usually prescribed. In these cases i'(0), my, np can be determined from the oz Yii
system (5)-(7). /] i 2 3 4
Fig. 2
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